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The function of mutual coherence 1s con-
sidered for a partially coherent light source
in a turbulent medium. The behaviour of the
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This article considers the effects of turbulent
fluctuations in dielectric permeability on the charac-
teristics of a light beam which are described by its
2nd order coherence function, The majority of theo~
retical studies dealing with the propagation of light
in homogeneous mediums copnsider purely coherent radia=-
tlon sources, However the degree of coherence of the
source ¢an be an important factor in a numbet of cases
even when we are interested im such comparatively
coarse characteristic as the mean light intensity.
Boelow we consider the sources of partially coherent
radiation in a turbulentatmosphere and investigate
the effect of the degree of coherence of the source

on the characteristio of the light beam.

Let us consider the light mourcein the

A=V . plane., Its coherence function is

1°(R, ) == g IR+ (/D) p) i (R—=(172) 9),
2




where u is the field !n the plane x = 0
and the bar denotes averaging of the field u,
over the fluctuations. For a completely coherent source

re the function has the form of a product,
VealR, §) = 1o (R +(1/2)p) 115 (R — (1.2) ), (1a)
so that in this case the modulus of the complex

coherence [1 ] is ecqual to unity. .
(R, )| L

R,
(R = IIF%RiﬂlWUP.O)WTR (12)9.0NI”
In a turbulent medium the coherence tunction is
I'(x, R, p) := cue(e, R+ (12)p)tt*(x, R—~(1/D)p)",

where uix, R)

is the field at the dimtance x from the source and
the brackets denote averaging over the fluctuations
in the dielvctric permeability. It satisfies the

equation derived by Dolin (2, (See also [3-57):

3 [ 2
Ul (-\de F_)_ — ;“_ VR V“ I + E:?_ H(.\', P) I = 0, (2)
Here H(x, ¢) = U @, (%, %) (1 — cosnp) d’» (3)

and m u_a)m.p(x.m ,.V) is tne tnree-dimensional spectral
density ot the fluctuations In the dielectric parmea-
bility wilich is a smuoth function of the longitudinal

coordinate x.

Th~ solution of oquation(2)with initial condition
(la) has the form [31

g Rop) - '”x, H (R’ ”d“p’ (R p )o\p{ (p—¢') >
S (4)
ﬂ, f xl x".
5 (R~ R)-n-j//[x,p;w(l-}”ax}.
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When the function VR, )= R (1,2 g Wy R —(1.2) D
which appears in (4) is considered as a random function
and it is averaged over the fluctuations u ., we obtain
an expression for the function P'ix, R ¢)
corresponding to a partially coherent light source,
with an initial coherence function in the general form
(1).

We will now cunsider some consequences which follow
from formula (4). We integrate (4) with respect to R

and we introduce the notation
(-]

108 = [ o Rop) R, 1ule) = 1 (0, ). (5)

-

Then on the bagis of (4), we obtain the simple

relation
x
12

o [ mA% ) p
Y (£, p)u-n(b)e.\p[ y gH(x. p)dx] (6)

' (1}

for the coherence function averaged over the beam [3].

The immediate physical meaning of Y{x,P) is that
it determines the angular spectrum of the light beam.
In fact when we place a lens in the plane x = const
which intercepts the entire beam and considen the
distribution of the intenslty in its focal plane, the
mean value of the intensity T at the di«tarce r from the

optical axis of the lens will be proportional teo

*

Iry~ [] (6 o) exp (ff;'—r) dp, (7)
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where £ is the foucal length of the lens. Thus the
characteristic scaly ot the functionyY (x,P) over p
determines the angular beam width. We will call this
characteristic scale the "effective radius of coherence."
It should be noted that the effective radius of
coherence which was introduced in this way does not
coincide with the radius of coherence which is defined
as the characteristic scale of the complex degree of
coherence Y. For example let us consider a pure
coherent light source with a field distribution

in its plane in the form

@ik
“q(?)’-—"Ae.\'p (—‘sz“‘l";_“e_;“)u (8)

Here a is the characteristic dimeﬁsion of the beam,
F is the radius of curvature of its pnase front (when
F<€ O the beam diverges). The complex degree of coherence
corresponding to(ﬁ)is equal in modulus to unity since
the radius ot cohurence of such a source is infinite,
At the same .ime the function y,(p), corresponding to
(8) is equal to

ful@) = wa? B ok [-— ; ( Lo ﬁ‘ff) P‘j (9)

at Fr

\

and

pu Ed 4.( ! ?."‘:’ -
S et B

(10)




When tor eadmp1c|F!=°0 ' pefr=23

aven though the bgam under consideration is completely
coherent, The infinite radius of coherence for a

source of type ( 8)

indicates in principle the possibility of obtaining

FW for it a sharp interference pattern with ¥ ;, = O

When for example, one of the apertures of the interioro-

’ meter 1s placed on the axis of the beam and the

other at a distance on the order a froum it, to obtain

the interference pattern with I 0]

min~
f an attennuator is needed which equalizes the inten-~
: sities at both apertures, When sucn an attennuntor

is not used, the inter forence pattern will spread

at distances on the order of [d .
eff

Thuas dotermines not only the augular

peff
beam width but has also direct relevance on the pos~

J
-
} sibility ot Obtaining an interfasrence pattern when
|
amplitude~-phase aitljustors are not uscd, ’
Let us conaider the case when tho light sourcu has

} partial or three dimensional coherence. Suppose for

) 2 ‘ik 2 -
oxumple iler) = A exp [—:%‘; LR j .. (5a)

where@(p) is the random phase whose mean value i3 equal to

0 and has a Gaussian distribution. When




[3(p.) 4lpatl = Floy — g.),

we obtain easily for the funct ion 'R, ¢) .
i
| !
the formula - . )
R? A ikp R 1 ] ;
e 1AN exp | == = e e e SN e — F .
TR, p) = |A% exp [ e =g Fe) s

: : 1
In this case the function Yq (p ) l

has the form '

volp) = ma?|AY exp [——:-

. \
- -

Formule (9) wus obtained taking into accoint tie 2

well known equality

exp (1 {#(ga)- #(p)]] = exp {-— ; % (en) — 'e(m)'l?].

In subsequent calculations we will use a quadratic )

F(p) = %2,

b
|
t ‘ approximation of the function F(p)
} where pKis the radius of coherence of the source wh ich

18 the characteristic scale of the complex degree of 1

‘ coherence {(R, p). We note that 0 is related to C
i K
- the angular beam width % in the reglion Y>7>%n

| (where its direct.vity pattern was formed)by the

expression | e
.%'l\ = — "’ 'i“_'.T_‘j;:‘/a." (x g v ——...f‘ .'."5.___) ,

PR
kua Va4

| which enables us to estimate p..
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Then
i a P kit ] 1
-m().-:aﬁa-ex)‘- i.n R ]nz‘
] P ] ‘ 4 ﬂg 1 ‘P’ l {J: H J (93 )
Let us return to relation (6) and consider the
case of a statistically homogemneous turbulent medium
for which the structural dielectric permeability

function can be approximated by the expression

Di @y p) = CO(0) [ (2* 4+ )™ — 7). (11)
The spectral :density

4, (x) = NCULT (1) M Ky (1),
N = 92290 PG (12)
corresponds to structural function (11).

We note that the representation of the spectral
density in the form (12) approximates well the experi-
mental data (6] with respect to the temperature fluc-
tuations both in the inertial and in the viscous spec-
trel snterval, On the other hand expression (11)
has a simple form and it is convenlent to approximate
the structural function both in the inertial and v,s-
cous interval, The scale l  is related to the
scale j,, which is Jdefined as the point of intercection

of thu asymptotic expansions Dii) ~ ¢ and Dip) ~ 7,




by the relation

_— ud
’l) [0”3 .

Substituting (12) in (3) after the integral is

evaluated we obta.n the formula

Hx, p) = MC(xY {2 -+ L) — 5]

+

M 300 0,461, (13)
5V=T(53)

and in accordance with (9} (13)and(16)we find the co-
herence function averagel in the plane
. -yl Al , 1 ,l 1 1
1(x, 7) = =a|A% exp —';(;;: Ll K

b )
N B (14)
___f'_r k'-'Z‘?x[(p’-{- Bpe 13'3]} '

where we used the notation
- 1 A,
Cim — j Ci(x)dx'.
x
i
Formula (14) enables us to investigate the behavior

of the yuantity Py in a turbulent medium. When we

define p, as that value of o, for which (v, ¢ dec-

creases e times in compar.son jly,0) , we obtain for Poiy

the equation

4

1 4 'E.‘}i + ..L) b w MEE R A 14 n
(”2 Iz “3' Pl“' t = R “f‘l”' F )P = o) s, (1.5)
whose solution has the form

g =57 0= ] (16)




Here -— ' kia?
- Nogn ¢ 1 ! I” 1
H ) ..L - /A-! (:. '\.‘It; ,r‘,,’ . l_ !u ( I R ,."_.. _} )‘
s ) K

’.a i a-F 1)
e = L 1
e () ()
and 403 is a root of the equationn

LU=y (17)

) In the region %¥l, which corresponds to 548,

the function ¢y} is
JRHEILY
In this cuse

2 ~ P 1 I\ .
) P.“r‘-w 0[(+_B-) ""1]. B>, (18)
When the conditions B%a, B3 1, are satisfied simul-

taneously, we obtain from (18)

6 n

p;w.a-g—é’_, B>»a, B>, (18a)

and the effective radius ot coherence is small in com-
parison with the internal turbulence scale Lo'

When BJ»9, but B&L1l, 1 e. a g BKY, we obtain

from (18)
4 s
. B = [—=—-) , 1»B™a
v (:Mc':..\-) (18b)

In both cases (18a) and (18b) the radius of co-
herence 1s determined only by the turbulence paratetery
and it does not depend on the initial jarametersof
the beam . Therefore we can call the case BXa

10
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the case of strone turhbulence.,

For the condition s, | which can also hold when

B#aora=x=B? i, the solution of equation (7) takes on the ’
|l

5 _4¢ OB
form &) = [l——‘f"”6 + ry T“‘-“—;,-é LRI N ], '
and we obtain instead or (16) '

4 1 \54
g L@ b Fi g 1 gl [1~B[(l'*"§) _1]"'0(3')}‘ (19)

\ /
' The last formula applies to the case o' weak tur- i
|
bulcnce when the effuctlve radius of coherence is mainly
!
determined by the light source, |
w Let us now consider the mean Iintensity which can
L be obtained from (4), by setting o-0  In the l
L previous model of the light source af'ter the quadratlc
approximatlion of %“he function Ploya it
» is substituted in (9), the expression for Ix, R)=1(, R, 0)
A can be reduced to the Corm o .
1(x, R) = .!-(’Si’.l.{'.?‘]"' CrkRrE
2N x ) UL x )\
A (20)
* . 27x) n k[ :
CONp e e VLU B (L N [
v ENE 4, !
1]
' ! after intepgration with respect to R and tho anpgular ]
} variable related to P Here we used the notation
b, | .
! | [EACITLE LA
Lx) - l+/c‘u‘(---—~--) .
8 I R i (21)
We note that the radlus ol coherence of the source ]
| enters (20) only by way of the parameter g, (x.
T 11
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wWhen we consider a pure coherent light source for

which =7 “,instead of 7{y) we obtain the function

é 112
r(x)=ll+k’a‘(-}~%:” ' (21a)

and the expressions (20), (21) coincide with those

given in [3]. Thus the incomplete coherence of this

source in tne expression for the mean intensity is equi-

velent to some change in the initial radius of curvature F.

Let us consider in greater detail the expression

for the mean intensity on the beam axis. ye use the
same model (173)for the function  [/{x.7), and we
assume >C4xﬁa constant. Then we obtain
easily for /ix0 the formula

- oy 1
I(x, 0) == Io(x)/g.bs exp{—pt=B [ (8 + 1yw—1]de) or, (22)
¢

whare

- 1,8.(x) \? = [ _ka’A N2
g ( 2a ) fols) (xm(x) '

-

and B is defined by (16). The quantity Io(x) is the
intensity on the beam axis from the same light source
in the absence of turbulence.
In the case of small p, expression (22) takes on
the asymptotic form
T(x, 0 < 2(r) fexg(——f —prat = 1) [0, (29)
Bpvs . 1, ‘

12
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-
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where 1xm-§-Bp‘“ . We note that expression (
easily obtained directly from (20) also in t

of variable C..
1/6

For the condit.on Bp & 1 the asymptote //(x, p) ~

= MCi(x)QS/j, which after substitution in (2

to expression (23) in which

1
L) A B X a .,
b k..x P C‘ ) (1 — Ant .
e () .;Y () (1 — ) el

The function f(u) was studied in [3]. Here

9
po= -} D, x,x. __-;f_'.__)'
e 2 it AN gl("')
where Lh_y.is tite root mean square fluctuati
the complex phase for a spherical wave. Thu
depends on the root mean square phase differ
the base Za/gl(x). When we consider a weak

u

A/ (o= —

source for which p & &, o
o K Kk [
and : ﬁiz:&m. In this case the intensity
1

on the root mean square phase difference on
radius of coherence.

The ratio of the mean intensity on the

axls for a partially and completely coherent source i+

given in Fig. 1l as a lunction of pk/a.

The different curves differ by the parameter

which is determined from expression (24), in

13

— .. R __ . -

23) is

he case

0), Leads

(21)

on of
s [
ence on

coherent

depends

the

beam

‘&3()!1

which

| Y .

-
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g, was replaced by g. When both inequalities

um? 1, ¥ » 1, are satisfied. in both cases the

asymptotic formula [ 3] Tpe) e 1,10 — 1 dg T g
holds, and

T g |.35( L —--:,-;—) + ..

leak b themh
and the quantithmIcoh and Iincoh are close to one

another, i.e., in the region u »1 the mean intensity

no longer depends on the degree of coherence of the

source.

Fig. 1. Ratio of Mean Intensities on the
Bea:n Axis For a Partially Coherent

And Completely Coherent Source (Curve
1 when there is no turbulence, curvel,

u coh=3, curve3,uc0h= 10
.l‘lln.uh /iuh
08
» 04
0
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